
Details of Articles Published in Journals 
 
 

2023-24 
 

 
Author(s)  Title of Article  Name of Journal  Vol. No. 

Year and 
Page 
Number  

ISSN  Impact 
Factor  
if any  

R.Vijayadeepika  Evaluating the 
sustainability 
of Cirrhinus 
mrigala in a 
sintex tank 
culture: A 
Promising 
Experimental 
Study  

Journal of 
Advanced 
Zoology  

Volume 44 
year 2023  

0253-7214   

R.Vijayadeepika  Kubernetes 
Steling Srvice 
Account 
Tokens to 
obtainCluster-
Admin  

International 
Journal of 
Multidisciplinar
y Educational 
Research  

Volume 12, 
year 2023  

2277-7881  8.017  

R.Vijayadeepika  Digital 
Forming in 
Horticulture 
Revoluting 
Crop 
Management 
and 
Monitoring  

United 
International 
Journal of 
Engineering & 
sciences  

Volume4, 
Special 
Issue-1  
2024 

2582:5887  6.71  

R.Vijayadeepika  Nano material 
in heath care  

United 
International 
Journal of 
Engineering & 
sciences  

Volume5, 
Special 
Issue-2  
2024 

2582:5887  6.71  

 



 

Journal of Advanced Zoology 
ISSN: 0253-7214 

Volume 44 Issue 04 Year 2023 Page 166:173 

________________________________________________________________________________________________________    

- 166 - 

Evaluating The Suitability of Cirrhinus Mrigala in a Sintex Tank Culture 

System: A Promising Experimental Study 

Sridhar Dumpala1, Vivek Chintada2, A Govardhan Naik2, Mohan Rao S1, 

Vijayadeepika R3, K Veeraiah4, Kakarlapudi Ramaneswari5*  

 1Department of Aquaculture, University College of Science and Technology Adikavi nannaya university, 

Rajamahendravaram, Andhra Pradesh, India 
2Department of Zoology, Sri Venkateswara University, Tirupati, A.P, India 

3Department of Zoology, CSTS Government Kalasala, Jangareddygudem, A.P, India 
4Department of Zoology, Acharya Nagarjuna University, Guntur, A.P, India 

5*Department of Zoology, University College of Science and Technology 

Adikavi nannaya university, Rajamahendravaram, Andhra Pradesh, India 

*Corresponding author’s E-mail: ramaneswari.zoo@aknu.edu.in  

Article History 

  

Received: 06 June 2023  

Revised: 05 Sept 2023  

Accepted: 07 Nov 2023  

 

 

 

 

 

 

CC License 

CC-BY-NC-SA 4.0 

Abstract 

 
This pioneering study conducted by the Department of Aquaculture aimed to 

assess the suitability of Cirrhinus Mrigala, a freshwater species, for cultivation 

in a Sintex tank. The objective was to determine the growth potential and 

productivity of Cirrhinus Mrigala in this specific tank culture system. Over a 

period of 60 days, the final weights of the fish specimens were recorded as 

follows: 2.0g, 4.30g, 6.96g, 9.98g, 11.21g, and 14.17g, respectively. The total 

fish yield achieved during this period was 437.58 grams, utilizing a natural 

feeding regime. This study provides valuable insights as the first investigation 

in this domain, revealing promising indications for the implementation of Sintex 

tank culture for Cirrhinus Mrigala cultivation. 

Keywords: Cirrhinus mrigala, Sintex tank, Aquaculture, Feeding 

1. Introduction 
India is globally recognized as the third-largest producer of aquaculture, trailing only behind China 

(FAO, 2014). The fishing industry in India is a significant contributor to the country's economy, 

employing over seven million people and generating substantial annual revenue (Gadage RS, 2005). 

Fisheries and aquaculture play a fundamental role in providing food, nutrition, livelihood, and economic 

stability for millions of people. Given its affordability and high-quality protein content, fish 

consumption can contribute to combating hunger and malnutrition in the nation. India's fishing industry 

has undergone significant development over the years, emerging as a crucial socio-economic sector. 

The country contributes around 16% of the world's inland fish production and 5% of marine fish 

production, with a total fish yield of 162.48 lakh tonnes in 2021-2022 (Handbook on Fisheries Statistics, 

2022). 

Among the various fish species cultivated in India, major carps hold a prominent position due to their 

rapid growth and high consumer acceptability (V.P. Saini et al., 2014). These carps account for 

approximately 87% of the country's total freshwater aquaculture production (Ayyappan S and Jena JK, 

2003). Consequently, India possesses immense potential for the development of fish-based enterprises, 

with a focus on fish production, marketing, and consumption. The three primary carps in Indian 

freshwater aquaculture are Catla (Catla catla), Rohu (Labeo rohita), and Mrigal (Cirrhinus mrigala). 

These carp species are preferred by farmers due to their fast growth rates and high consumer demand. 

Additionally, certain exotic carp species, such as Ctenopharyngodon idella, Hypopthalmichthys 

molitrix, and Cyprinus carpio, have successfully adapted to Indian water conditions (Basant Bais, 

2018). 

Cirrhinus mrigala, also known as the Mrigal, is a fish species found in rivers and lakes in northern 

India. They have a streamlined body with a round abdomen and a deeply forked caudal fin. The mouth 

is wide and transverse, with a depressed snout and a complete top lip. Mrigal has two barbels and 

golden-colored eyes. It grows to an average length of around 40 cm and is well-suited for aquaculture 

mailto:ramaneswari.zoo@aknu.edu.in


 https://jazindia.comnline at: le obilaAva - 167 - 

in South India. Breeding occurs during the monsoon season, and forced breeding techniques are 

commonly used in its cultivation. There are several inter-generic hybrid fries available for culture. The 

fingerlings and adults primarily feed on animal protein. Maturity is reached by the age of two, although 

induced breed fish may reach maturity at one year old. Natural breeding usually occurs during the 

monsoon season, and fingerlings are available for sale from July to November. Mrigal can be found in 

rivers, tanks, and water bodies in regions such as Burma, the major river systems of India, the Deccan, 

Punjab, Sindh (Pakistan), Cutch, and Bengal (Basant Bais, 2018). 

The fishing sector is a significant driver of India's foreign exchange profits and contributes substantially 

to the national economy. Fish production in India has surged from 56.56 lakh tons in 2000-01 to 162.48 

lakh tonnes in 2021-22. Andhra Pradesh, West Bengal, Karnataka, Odisha, and Gujarat are the top five 

fish-producing states (Handbook on Fisheries Statistics, 2022). Major carps, including Cirrhinus 

mrigala, are important freshwater fish species cultivated in Asia, particularly in the Indian subcontinent. 

They are also commonly raised in semi-intensive composite culture systems in Pakistan. The aim of 

fish culture today is to maximize production under intensive culture conditions with the use of artificial 

nutrients (Silva et al., 2022). 

Fish farming, conducted in tanks, ponds, and pools, has gained popularity as more people seek a 

sustainable and healthy source of food for their families (Bharti, Pandey, and Vennila, 2016; Boyd et 

al., 2020). Tank culture offers advantages such as reduced feeding and harvesting time, as well as the 

ability to treat diseases more effectively due to smaller tank volumes. Intensive tank culture can 

maximize yields even on small parcels of land. However, the aquaculture industry faces challenges such 

as disease outbreaks, environmental degradation, and labor shortages, which must be overcome to 

ensure sustainable fish production (Yue and Shen, 2022). 

Circular tanks are an attractive choice for fish farming due to their ease of maintenance, ability to 

maintain uniform water quality, and the option to optimize fish health and condition through control of 

rotational velocities. Additionally, circular tanks allow for efficient removal of settleable solids through 

the center drain. 

2. Materials And Methods 

Tanks for Culturing: 

Initially, a Sintex tank was chosen for the experiment. The tank is a round plastic container with a 

bottom outlet. A pipe was used to bring in water from the outside source (Fig.B and Fig.C). 

 

Fig.A. Study area: Adikavi Nannaya university, Rajamahendravaram (17˚03'59"N81˚52'23"E) 

Fig.B. Water Inlet;  

Fig.C. Water Outlet;  

Fig.D. Fermentation Process 

Fermentation: 

To initiate the fermentation process, we used 2 kg of rice bran, 1 kg of jaggery, and 100 grams of yeast 

powder. These were mixed with 10 liters of water for a 48-hour period (Fig.D). 

 

https://jazindia.com/


Evaluating The Suitability of Cirrhinus Mrigala in a Sintex Tank Culture System: A Promising Experimental Study 

 

Available online at: https://jazindia.com  - 168 - 

Selection of Fish Species 

Cirrhinus mrigala was selected for the Sintex tank culture based on its economic importance. 

Stocking of Fish 

Fingerlings of Cirrhinus mrigala were obtained from Balabhadrapuram. The fingerlings were 

transported in polythene bags infused with oxygen. Each fish was weighed and measured before being 

stocked. A total of 40 fingerlings were stocked in a 1000-liter tank. 

Feeding 

After stocking, the fishes were fed with natural feed rice bran. The feed amount was 2% of their body 

weight in the morning at 9:00 AM and in the afternoon at 3:00 PM. After 40 days, the feed amount was 

increased to 3% of their body weight. 

Sintex Tank Management 

To properly maintain the Sintex tank, 200 liters of water were added to the 1000-liter tank. The tank 

was covered with a green fabric to protect it from direct sunlight. Water exchange was done every ten 

days. Water quality parameters were monitored daily. Feeding was conducted daily at 9:00 AM and 

3:00 PM. 

Culture Period 

The fingerlings were cultured in the Sintex tank for a period of 60 days, from February 2022 to April 

2022. 

Water Quality Parameters 

Important water quality parameters such as temperature, pH, total alkalinity, dissolved oxygen (DO), 

hardness, ammonia, nitrite, and nitrate were regularly measured and analyzed following the standard 

procedures recommended by APHA (2000).  

3. Results and Discussion 

Growth and production performance of Cirrhinus mrigala in tank culture 

The growth performance of Cirrhinus mrigala in a sintex tank in terms of final length and weight, 

weight gain percentage, specific growth rate (SGR%), daily growth rate (DGR), survival rate, and total 

production are shown in the table below. 

Length Gain 

The mean initial length of Cirrhinus mrigala for the 60-day culture period was 5.6 cm, 6.2 cm, 7.0 cm, 

8.4 cm, 9.6 cm, and 10.2 cm, respectively. 

Weight Gain 

The percentage of weight gain in natural feeding sintex tanks was 2%, 4.30%, 6.96%, 9.98%, 11.21%, 

and 14.17%, respectively. 

Specific Growth Rates (SGR) 

The mean percentage specific growth rates (SGR) over a 60-day period, with 10-day regular intervals, 

were 0.049%/day/fish, 0.487%/day/fish, 2.551%/day/fish, 4.156%/day/fish, 4.018%/day/fish, and 

3.447%/day/fish, 3.263%/day/fish respectively. 

Daily Growth Rates (DGR) 

The mean daily growth rate of Cirrhinus mrigala in natural feeding sintex tanks was 0.01 g/day, 0.115 

g/day, 0.165 g/day, 0.199 g/day, 0.184 g/day, and 0.202 g/day, respectively. 

Mortality  

Out of the 40 fishes placed in the sintex tank, 10 fishes died in the first week. After that, there were no 

more deaths recorded. 

Survival Per Cent 

The survival rate was 75%, with most of the deaths occurring in the first ten days of the experiment 

period. 

 

https://jazindia.com/


 https://jazindia.comnline at: le obilaAva - 169 - 

Yield/Total Production 

The total weight gained (yield) of Cirrhinus mrigala in the 60-day sintex tank culture with natural 

feeding was 437.58 g. 

Water Quality Parameters 

Physical parameters such as temperature and pH, as well as chemical parameters such as dissolved 

oxygen (DO), alkalinity, hardness, ammonia, nitrite, and nitrate, were measured at daily intervals 

throughout the study period. The mean values (±SD) of water quality parameters for different treatments 

are shown in the table below. 

The main objective of the present study was to assess the suitability of Cirrhinus mrigala for tank 

culture in terms of growth performance with natural feed and the maintenance of water quality 

parameters. 

Water quality parameter: 

Every 10 days average pH ranged from 7.5-7.91 

Every 10 days average D.O (mg L -1) was ranged from 5.0-6.0 respectively 

 

Graph.1. Water quality parameters of Cirrhinus Mrigala tank 

Growth performance: 

In the present study, during 60 days’ time Cirrhinus Mrigala attained the weight of 14. 17gm. from 

initial weight of 2gm show in (Shown in Fig.G and Fig.H) 

 

https://jazindia.com/


Evaluating The Suitability of Cirrhinus Mrigala in a Sintex Tank Culture System: A Promising Experimental Study 

 

Available online at: https://jazindia.com  - 170 - 

Fig.E.Initial length; Fig.F.Final length; 

Fig.G.Initial weight; Fig.H.Final weight 

  

Graph.2. The above chart indicates               Graph.3. The above chart indicates the body         

the body length of Cirrhinus mrigala                             weight of Cirrhinus Mrigala. 

Table.1. Growth Study of 40 Cirrhinus mrigala Fingerlings Fed Naturally from February 2022 to 

April 2022 

Days 
Initial 

length(cm) 

Final length 

(cm) 

Initial weight 

(gm) 

Final weight 

(gm) 

SGR 

(%) 
DGR Mortality 

Survival 

(%) 

1 – 10 5.6 5.6 2 2.001 0.004 0.01 09 77.5 

11 -20 5.6 6.3 2.001 4.30 2.551 0.115 00 77.5 

21 -30 6.3 7.0 4.30 6.96 4.156 0.165 01 75 

31-40 7.0 8.1 6.96 9.98 4.014 0.199 00 75 

41-50 8.1 9.4 9.98 11.21 3.447 0.184 00 75 

51-60 9.4 10.2 11.21 14.17 3.263 0.202 00 75 

Weight gain percentage (WG%), specific growth rate (SGR%), and daily growth rate (DGR) are listed 

as columns 5, 6, and 7 respectively. 

Calculations: 

1. For 10 days: 

   1 piece = 2g 

   Total = 30 x 2 = 60 x 3% body weight / 100 = 1.8g x 10 = 18g 

2. For 20 days: 

   1 piece = 0.30g 

   Total = 4.30 x 30 = 129 x 3% body weight / 100 = 

   3.87 x 10 = 38.7g 

3. For 30 days: 

   1 piece = 6.96g 

   Total = 6.96 x 30 = 208 x 3% body weight / 100 = 

   6.264 x 10 = 62.64g 

4. For 40 days: 

   1 piece = 9.98g 

   Total = 9.98 x 30 = 299.4 x 3% body weight / 100 = 

   8.982 x 10 = 89.82g 

5. For 50 days: 

   1 piece = 11.21g 

   Total = 11.21 x 30 = 336.3 x 3% body weight / 100 = 

   10.089 x 10 = 100.89g 

https://jazindia.com/


 https://jazindia.comnline at: le obilaAva - 171 - 

6. For 60 days: 

   1 piece = 14.17g 

   Total = 14.17 x 30 = 425.1 x 3% body weight / 100 = 

   12.753 x 10 = 127.53g 

Total feed for 60 days = 437.58g    

Total body weight = 425.1g 

• FCR (Feed Conversion Ratio) = Total consumed by fish / Weight gain by fish 

FCR = 437.58 / 425.1 

FCR = 1.029 g 

Daily weight gain = Final weight - Initial weight / Days 

= (14.17 - 2) / 60 

= 0.202 g 

Length gain = Final length - Initial length 

= 10.2 - 5.6 

= 4.6 cm 

SGR = (LnWt. - LnWi) x 100 / Δt 

= (Ln14.17 - Ln2) x 100/60 

= (2.651-0.693) * 100/60 

= 3.263 % 

Table. 2. Physico chemical parameters in sintex tanks at Adikavi Nany University. 

Day Temperature PH DO Hardness Alkalinity Ammonia Nitrite Nitrate 

1 26.10C 7.6 6.0 30 60 0 0 0 

2 27.10C 7.6 6.0 30 70 0 0 0 

3 27.20C 7.7 5.6 40 60 0 0 0 

4 27.10C 7.8 5.7 40 70 0 0 0 

5 28.30C 7.8 6.0 60 60 0 0 0 

6 28.40C 7.9 5.6 60 100 0 0 0 

7 26.60C 8.0 5.6 60 80 0 0 0 

8 26.30C 8.1 5.4 70 80 0 0 0 

9 270C 8.1 5.2 80 80 0 0 0 

10 28.20C 8.2 5.0 80 120 0 0 0 

11 27.10C 7.6 6.0 40 120 0 0 0 

12 27.40C 7.8 6.0 40 100 0 0 0 

13 250C 7.9 5.9 50 80 0 0 0 

14 27.60C 7.8 5.8 70 60 0 0 0 

15 290C 7.7 6.0 40 100 0 0 0 

16 29.30C 7.9 5.9 60 80 0 0 0 

17 28.20C 8.0 5.5 50 80 0 0 0 

18 27.60C 8.1 5.4 50 80 0 0 0 

19 25.50C 8.1 5.2 60 90 0 0 0 

20 30.10C 8.2 5.0 80 100 0 0 0 

21 27.30C 7.9 5.8 60 60 0 0 0 

22 24.60C 8.1 6.0 60 80 0 0 0 

23 290C 7.5 5.6 40 120 0 0 0 

24 26.60C 8.1 6.0 60 100 0 0 0 

25 29.10C 7.5 5.6 40 80 0 0 0 

26 290C 7.6 5.8 40 80 0 0 0 

27 28.40C 7.9 5.7 50 60 0 0 0 

28 27.80C 8.0 5.9 60 80 0 0 0 

https://jazindia.com/


Evaluating The Suitability of Cirrhinus Mrigala in a Sintex Tank Culture System: A Promising Experimental Study 

 

Available online at: https://jazindia.com  - 172 - 

29 280C 7.5 5.8 60 100 0 0 0 

30 28.40C 7.4 5.7 80 80 0 0 0 

31 280C 7.7 6.0 50 60 0 0 0 

32 27.50C 7.9 6.1 50 80 0 0 0 

33 27.10C 8.0 5.8 60 80 0 0 0 

34 240C 8.1 6.2 80 100 0 0 0 

35 29.30C 7.9 5.8 50 80 0 0 0 

36 27.80C 7.7 5.8 60 100 0 0 0 

37 26.50C 7.6 6.0 50 80 0 0 0 

38 28.0C 7.6 5.9 60 80 0.03 0 0.20 

39 280C 7.5 5.8 60 100 0.09 0 0.26 

40 29.10C 7.5 5.7 50 120 0.10 0 0.96 

41 28.10C 7.6 5.8 60 120 0 0 0 

42 27.10C 7.8 5.9 50 120 0 0 0 

43 25.40C 7.9 6.0 60 100 0 0 0 

44 26.20C 8.0 6.1 80 80 0 0 0 

45 27.90C 7.8 6.0 80 100 0 0 0 

46 28.30C 7.8 5.8 100 80 0 0 0 

47 28.60C 7.7 5.8 120 100 0 0 0 

48 30.20C 7.6 5.7 140 120 0.02 0 0.25 

49 32.10C 7.5 5.6 180 130 0.06 0 0.86 

50 30.20C 7.5 5.7 160 110 0.12 0 1.01 

51 27.90C 7.8 6.2 40 100 0 0 0 

52 28.20C 7.9 6.0 50 80 0 0 0 

53 29.60C 7.9 6.0 60 80 0 0 0 

54 30.10C 7.8 5.8 80 100 0 0 0 

55 30.30C 7.7 5.6 100 120 0 0 0 

56 31.00C 7.7 5.5 120 100 0 0 0 

57 32.10C 7.8 5.4 100 120 0.04 0 0.92 

58 31.60C 7.9 5.5 120 100 0.12 0 1.56 

59 32.10C 7.6 5.4 140 120 0.18 0 2.92 

Total 1691.9 467.7 340 4210 5470 1.01 0 13.26 

Total/10 28.19 7.795 5.66 70.16 91.16 0.016 0 0.221 

 

The results of the present study are supported by previous researchers who conducted experiments on 

growth and survival tests with different supplementary diets for various fish species (Abbas et al., 2010; 

Rahman & Rahman, 1999). Table. 2 shows the water qualities measured in the sintex tank during the 

fingerling raising. The temperature, pH, dissolved oxygen, and total alkalinity were found to be within 

the ideal range for the growth of these carp species (Jana & De, 1988, 1993; Jena et al., 1998). 

4.  Conclusion 

Based on the findings, Cirrhinus mrigala was found to be a suitable fish species for sintex tank culture 

at the Adikavi Nannaya University. However, since sintex tank culture is not well-known among local 

businesspeople and fishermen, it is necessary to conduct root-level extension programs to increase 

awareness and acceptance of these cultural practices. Given the wide regional distribution of Cirrhinus 

mrigala in India and its consumer acceptance, it is crucial to prioritize the modification and 

advancement of techniques for its culture. Considering the eco-socio-economic context of the 

smallscale farmers, tank culture of Cirrhinus mrigala seems to be the most viable option for sustainable 

fish production. Especially for a densely populated country like India, sintex tank culture is essential. 

Acknowledgement 

The authors would like to express their gratitude to the authorities of Adikavi Nannaya University for 

providing laboratory facilities and the experimental place. 

References: 
Ayyappan S, Jena JK. (2003) Grow–out production of Carps in India. Journal of Applied Aquaculture; 13:251–

282.  

Basant Bais (2018) “Fish scenario in India with emphasis on Indian major carps”, Int J Avian & Wildlife Biol. 

2018;3(6):409‒411 

https://jazindia.com/


 https://jazindia.comnline at: le obilaAva - 173 - 

Boyd, C.E.et al., (2020)” Achieving sustainable aquaculture: Historicaland current perspectives and future needs 

and challenges, Journal of the world aquaculture society, 51(3), pp.578-633.doi:10.1111? jaws.12714. 

FAO. The State of World Aquaculture. Rome: FAO Fisheries Department; 2014. p. 3–27 

Gadage RS (2005) Production and marketing of fish and fish preparations in India. Indian Journal of Agricultural 

A1arketing; 19:61. 

Handbook on Fisheries Statistics (2022), https://dof.gov.in/sites/default/files/2023-

08/HandbookFisheriesStatistics19012023.pdf. 

Jana B.B. & De U.K. (1988) Effects of farming management on primary productivity of phytoplankton in fish 

ponds. Journal of Aquaculture in theTropics 3, 95-105. 

Jana B.B. & De U.K. (1993) Management-induced variability of the bacterioplankton in fish farming ponds. 

Journal of Aquaculture in theTropics 8,131-140. 

Jena J.K., Aravindakshan P.K., Chandra S., Muduli H.K. & Ayyappan S. (1998) Comparative evaluation of 

growth and survival of Indian major carps and exotic carps in rearing fingerlings. Journal of 

Aquaculture in the Tropics 13,143-150. 

Rahman MA, Rahman MS. (1999) Effects of artificial feeds on production of fish in polyculture. Bangladesh 

Journal of Fisheries Research; 3(2):165-172 

Reb Abbas S, Ahmed I, Salim M, Rehman K. Comparative effects of fertilization and supplementary feed on 

growth performance of three fish species (2010). International Journal of Agriculture and Biology. 

12(2): 276-280.  

Silva, V.F .et al. (2022) Effects of Microalgae Additional and Fish Feed Supplementation in the Integrated Rearing 

of Pacific White Shrimp and Nile Tilapia Using Biofloc Technology, 

Animals,12(12).doi:10.3390/ani12121527 

V.P. Saini, M.L.Ojha, M.C.Gupta, Preeti Nair, Amrata Sharma, Vikas Luhar (2014) Effect of Dietary Probiotic 

on Growth Performance and Disease Resistance in Labeo rohita (Ham.) Fingerlings, International 

Journal of Fisheries and Aquatic Studies; 1(6): 07-11. 

Yue K., Shen Y. (2022). An overview of disruptive technologies for aquaculture. Aquacult. Fish., 7: 111–120. 

https://jazindia.com/


 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
127 

 
 

KUBERNETES: STEALING SERVICE ACCOUNT TOKENS TO OBTAIN CLUSTER-ADMIN 
 

Meram Munirathnama and  R.Vijayadeepikab 

aAsst.Professor, Department of Mathematics, Rajiv Gandhi University of Knowledge Technologies, Idupulapaya 
 Andhra Pradesh, India 

bLecturer, Department of Zoology, CSTS Government Kalasala,,Jangareddigudem, Andhra Pradesh, India 
 
Abstract 

In this paper first I would like to explain about kubernetes cluster also we have discussed here about Host 
Enumeration, Lmit Ranger & RBAC ROLE. After that I would like to Kubernetes security is a complex subject that relies 
on well-designed Role-Based Access Control (RBAC). Kubernetes service account tokens contain the permissions an 
application utilizes to authenticate and perform actions in a Kubernetes environment. 

 
1.Introduction 
Kubernetes is one of the fastest-growing technologies in today's current market. 
Google originally built it as part of their Borg system to deploy and operate containerized applications at scale, and in 
2014 it was released as open source under the name Kubernetes (Metz, 2014). Since then, Kubernetes adoption has grown 
tremendously and is now utilized by 70% of organizations, as shown by Red Hat (Cormier, 2022). This rapid growth has 
not been without its share of problems. Over the years, numerous security incidents, data breaches, and outages have 
resulted from poorly understood and misconfigured security environments. This paper explores how Kubernetes 
privileges tie into Kubernetes service account tokens, how these tokens are utilized to compromise a Kubernetes cluster, 
and recommendations to detect and defend against service account token compromise. 
 
2. Kubernetes Architecture 
Kubernetes components are generally grouped into Control Plane components and Node Components. The Control Plane 
components oversee scheduling pods, handling processes, interfacing with cloud environments, storing all cluster data, 
and perhaps most importantly, exposing the Kubernetes Application Programming Interfaces (APIs) for others to access 
via the API server component. Node components, also known as worker node components, run Kubernetes pods via the 
kubelet, kube-proxy, and containerruntime. 
 
2.1.Kubernetes Cluster: 

A Kubernetes cluster consists of a set of worker machines, called nodes that run containerized applications. Every cluster 
has at least one worker node. 

The worker node(s) host the Pods that are the components of the application workload. The control plane manages the 
worker nodes and the Pods in the cluster. In production environments, the control plane usually runs across multiple 
computers and a cluster usually runs multiple nodes, providing fault-tolerance and high availability. 

This document outlines the various components you need to have for a complete and working Kubernetes cluster. 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
128 

 
 

 

 
Kubernetes components are generally grouped into Control Plane components and Node Components. The Control Plane 
components oversee scheduling pods, handling processes, interfacing with cloud environments, storing all cluster data, 
and perhaps most importantly, exposing the Kubernetes Application Programming Interfaces (APIs) for others to access 
via the API server component. Node components, also known as worker node components, run Kubernetes pods via the 
kubelet, kube-proxy, and containerruntime. 
 
2.2. Kubernetes Pods 
Kubernetes created a Pod to host your application instance. A Pod is a Kubernetes abstraction that represents a group of 
one or more application containers (such as Docker), and some shared resources for those containers. Those resources 
include: 

 Shared storage, as Volumes 
 Networking, as a unique cluster IP address 
 Information about how to run each container, such as the container image version or specific ports to use 

A Pod models an application-specific "logical host" and can contain different application containers which are relatively 
tightly coupled. For example, a Pod might include both the container with your Node.js app as well as a different 
container that feeds the data to be published by the Node.js webserver. The containers in a Pod share an IP Address and 
port space, are always co-located and co-scheduled, and run in a shared context on the same Node. 

Pods are the atomic unit on the Kubernetes platform. When we create a Deployment on Kubernetes, that Deployment 
creates Pods with containers inside them (as opposed to creating containers directly). Each Pod is tied to the Node where 
it is scheduled, and remains there until termination (according to restart policy) or deletion. In case of a Node failure, 
identical Pods are scheduled on other available Nodes in the cluster. 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
129 

 
 

2.3. Nodes: 
A Pod always runs on a Node. A Node is a worker machine in Kubernetes and may be either a virtual or a physical 
machine, depending on the cluster. Each Node is managed by the control plane. A Node can have multiple pods, and the 
Kubernetes control plane automatically handles scheduling the pods across the Nodes in the cluster. The control plane's 
automatic scheduling takes into account the available resources on each Node. 

Every Kubernetes Node runs at least: 

 Kubelet, a process responsible for communication between the Kubernetes control plane and the Node; it 
manages the Pods and the containers running on a machine. 

 A container runtime (like Docker) responsible for pulling the container image from a registry, unpacking the 
container, and running the application. 

 

2.4.Volumes 

On-disk files in a container are ephemeral, which presents some problems for non-trivial applications when running in 
containers. One problem occurs when a container crashes or is stopped. Container state is not saved so all of the files that 
were created or modified during the lifetime of the container are lost. During a crash, kubelet restarts the container with a 
clean state. Another problem occurs when multiple containers are running in a Pod and need to share files. It can be 
challenging to setup and access a shared filesystem across all of the containers. The Kubernetes volume abstraction solves 
both of these problems. Familiarity with Pods is suggested. 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
130 

 
 

2.4.1.Persistent Volumes: 
Managing storage is a distinct problem from managing compute instances. The PersistentVolume subsystem provides an 
API for users and administrators that abstracts details of how storage is provided from how it is consumed. To do this, we 
introduce two new API resources: PersistentVolume and PersistentVolumeClaim. 

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynamically 
provisioned using Storage Classes. It is a resource in the cluster just like a node is a cluster resource. PVs are volume 
plugins like Volumes, but have a lifecycle independent of any individual Pod that uses the PV. This API object captures 
the details of the implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system. 

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod. Pods consume node resources 
and PVCs consume PV resources. Pods can request specific levels of resources (CPU and Memory). Claims can request 
specific size and access modes (e.g., they can be mounted ReadWriteOnce, ReadOnlyMany or ReadWriteMany, 
see AccessModes). 

While PersistentVolumeClaims allow a user to consume abstract storage resources, it is common that users need 
PersistentVolumes with varying properties, such as performance, for different problems. Cluster administrators need to be 
able to offer a variety of PersistentVolumes that differ in more ways than size and access modes, without exposing users 
to the details of how those volumes are implemented. For these needs, there is the StorageClass resource. 

3. Findings  
Host Enumeration, Lmit Ranger & RBAC ROLE:  
 
Kubernetes doesn’t provide default resource limits out-of-the-box. This means that unless you explicitly define limits, your 
containers can consume unlimited CPU and memory.  
Resource limits are enforced at the container level but are usually defined as part of the Deployment, like this: 

 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
131 

 
 

You can also define a default limit for pods that don’t specify their own limits. This is done by creating a Limit Range in 
the relevant namespace: 
apiVersion: v1 
kind: LimitRange 
metadata: 
  name: my-limit 
spec: 
  limits: 
  - default: 
      memory: 512Mi 
      cpu: 100m 
    type: Container 
Kubernetes is also kind enough to document the change with an annotation: 
Kubectl-n test describepod | grep Annotations 
Annotations:    kubernetes.io/limit-ranger: LimitRanger plugin set: cpu, memory request for container nginx; cpu, 
memory limit for container nginx 
Limit Ranges Have Some Surprising Behaviors 
1. New Kubernetes clusters have a single predefined Limit Range named “limits” in the default namespace with CPU 

limit set to 100m (that’s 1/10 of a CPU core). Other namespaces don’t have a default Limit Range but you can create 
them on your own. 

2. There may be multiple Limit Ranges per namespace. In this case, Kubernetes will use one of them for the default 
limits (and all of them for min and max limits). 

3. Containers that were created before the Limit Range will not be affected by it. 

3.2.Limit Ranger: 
This admission controller will observe the incoming request and ensure that it does not violate any of the constraints 
enumerated in the LimitRange object in a Namespace. If you are using LimitRange objects in your Kubernetes 
deployment, you MUST use this admission controller to enforce those constraints. LimitRanger can also be used to apply 
default resource requests to Pods that don't specify any; currently, the default LimitRanger applies a 0.1 CPU requirement 
to all Pods in the default namespace. 

 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
132 

 
 

The attacker can exec into the pod and gain shell access, download the kubectl binary, and then run the kubectl binary 
from within the pod with full cluster admin privileges. Other service accounts can be specified, and attackers can test 
multiple service accounts until they obtain the desired privileges. 

3.3.ROLE AND CLUSTERROLE: 
An RBAC Role or ClusterRole contains rules that represent a set of permissions. Permissions are purely additive (there 
are no "deny" rules). A Role always sets permissions within a particular namespace; when you create a Role, you have to 
specify the namespace it belongs in. ClusterRole, by contrast, is a non-namespaced resource. The resources have different 
names (Role and ClusterRole) because a Kubernetes object always has to be either namespaced or not namespaced; it 
can't be both. 

ClusterRoles have several uses. You can use a ClusterRole to: 

1. Define permissions on namespaced resources and be granted access within individual namespace(s) 
2. Define permissions on namespaced resources and be granted access across all namespaces 
3. Define permissions on cluster-scoped resources 

If you want to define a role within a namespace, use a Role; if you want to define a role cluster-wide, use a ClusterRole. 

Role example 
Here's an example Role in the "default" namespace that can be used to grant read access to pods: 

apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
namespace: default 
name: pod-reader 
rules: 
- apiGroups: [""] # "" indicates the core API group 
resources: ["pods"] 
verbs: ["get", "watch", "list"] 

ClusterRole example 
A ClusterRole can be used to grant the same permissions as a Role. Because ClusterRoles are cluster-scoped, you can also 
use them to grant access to: 

 Cluster-scoped resources (like nodes) 
 Non-resource endpoints (like /healthz) 
 Namespaced resources (like Pods), across all namespaces 

For example: you can use a ClusterRole to allow a particular user to run kubectl get pods --all-namespaces 

Here is an example of a ClusterRole that can be used to grant read access to secrets in any particular namespace, or across 
all namespaces (depending on how it is bound): 

 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
133 

 
 

apiVersion: rbac.authorization.k8s.io/v1 
kind: ClusterRole 
metadata: 
# "namespace" omitted since ClusterRoles are not namespaced 
name: secret-reader 
rules: 
- apiGroups: [""] 
# 
# at the HTTP level, the name of the resource for accessing Secret 
# objects is "secrets" 
resources: ["secrets"] 
verbs: ["get", "watch", "list"] 
The name of a Role or a ClusterRole object must be a valid path segment name. 

3.4. Role Binding and ClusterRoleBinding 
A role binding grants the permissions defined in a role to a user or set of users. It holds a list of subjects (users, groups, or 
service accounts), and a reference to the role being granted. A RoleBinding grants permissions within a specific 
namespace whereas a ClusterRoleBinding grants that access cluster-wide. 

A RoleBinding may reference any Role in the same namespace. Alternatively, a RoleBinding can reference a ClusterRole 
and bind that ClusterRole to the namespace of the RoleBinding. If you want to bind a ClusterRole to all the namespaces in 
your cluster, you use a ClusterRoleBinding. 

The name of a RoleBinding or ClusterRoleBinding object must be a valid path segment name. 

RoleBinding examples 
Here is an example of a RoleBinding that grants the "pod-reader" Role to the user "jane" within the "default" namespace. 
This allows "jane" to read pods in the "default" namespace. 

apiVersion: rbac.authorization.k8s.io/v1 
# This role binding allows "jane" to read pods in the "default" namespace. 
# You need to already have a Role named "pod-reader" in that namespace. 
kind: RoleBinding 
metadata: 
name: read-pods 
namespace: default 
subjects: 
# You can specify more than one "subject" 
- kind: User 
name: jane # "name" is case sensitive 
apiGroup: rbac.authorization.k8s.io 
roleRef: 
# "roleRef" specifies the binding to a Role / ClusterRole 
kind: Role #this must be Role or ClusterRole 
name: pod-reader # this must match the name of the Role or ClusterRole you wish to bind to 
apiGroup: rbac.authorization.k8s.io 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
134 

 
 

A RoleBinding can also reference a ClusterRole to grant the permissions defined in that ClusterRole to resources inside 
the RoleBinding's namespace. This kind of reference lets you define a set of common roles across your cluster, then reuse 
them within multiple namespaces. 

For instance, even though the following RoleBinding refers to a ClusterRole, "dave" (the subject, case sensitive) will only 
be able to read Secrets in the "development" namespace, because the RoleBinding's namespace (in its metadata) is 
"development". 

apiVersion: rbac.authorization.k8s.io/v1 
# This role binding allows "dave" to read secrets in the "development" namespace. 
# You need to already have a ClusterRole named "secret-reader". 
kind: RoleBinding 
metadata: 
name: read-secrets 
# 
# The namespace of the RoleBinding determines where the permissions are granted. 
# This only grants permissions within the "development" namespace. 
namespace: development 
subjects: 
- kind: User 
name: dave # Name is case sensitive 
apiGroup: rbac.authorization.k8s.io 
roleRef: 
kind: ClusterRole 
name: secret-reader 
apiGroup: rbac.authorization.k8s.io 

ClusterRoleBinding example 
To grant permissions across a whole cluster, you can use a ClusterRoleBinding. The following ClusterRoleBinding allows 
any user in the group "manager" to read secrets in any namespace. 

apiVersion: rbac.authorization.k8s.io/v1 
# This cluster role binding allows anyone in the "manager" group to read secrets in any namespace. 
kind: ClusterRoleBinding 
metadata: 
name: read-secrets-global 
subjects: 
- kind: Group 
name: manager # Name is case sensitive 
apiGroup: rbac.authorization.k8s.io 
roleRef: 
kind: ClusterRole 
name: secret-reader 
apiGroup: rbac.authorization.k8s.io 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
135 

 
 

After you create a binding, you cannot change the Role or ClusterRole that it refers to. If you try to change a 
binding's roleRef, you get a validation error. If you do want to change the roleRef for a binding, you need to remove the 
binding object and create a replacement. 

There are two reasons for this restriction: 

1. Making roleRef immutable allows granting someone update permission on an existing binding object, so that they can 
manage the list of subjects, without being able to change the role that is granted to those subjects. 

2. A binding to a different role is a fundamentally different binding. Requiring a binding to be deleted/recreated in order 
to change the roleRef ensures the full list of subjects in the binding is intended to be granted the new role (as opposed 
to enabling or accidentally modifying only the roleRef without verifying all of the existing subjects should be given 
the new role's permissions). 

The kubectl auth reconcile command-line utility creates or updates a manifest file containing RBAC objects, and handles 
deleting and recreating binding objects if required to change the role they refer to. See command usage and examples for 
more information. 

Referring to resources 
In the Kubernetes API, most resources are represented and accessed using a string representation of their object name, 
such as pods for a Pod. RBAC refers to resources using exactly the same name that appears in the URL for the relevant 
API endpoint. Some Kubernetes APIs involve a subresource, such as the logs for a Pod. A request for a Pod's logs looks 
like: 

GET /api/v1/namespaces/{namespace}/pods/{name}/log 
In this case, pods is the namespaced resource for Pod resources, and log is a subresource of pods. To represent this in an 
RBAC role, use a slash (/) to delimit the resource and subresource. To allow a subject to read pods and also access 
the log subresource for each of those Pods, you write: 

apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
namespace: default 
name: pod-and-pod-logs-reader 
rules: 
- apiGroups: [""] 
resources: ["pods", "pods/log"] 
verbs: ["get", "list"] 
You can also refer to resources by name for certain requests through the resourceNames list. When specified, requests can 
be restricted to individual instances of a resource. Here is an example that restricts its subject to 
only get or update a ConfigMap named my-configmap: 

apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
namespace: default 
name: configmap-updater 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
136 

 
 

rules: 
- apiGroups: [""] 
# 
# at the HTTP level, the name of the resource for accessing ConfigMap 
# objects is "configmaps" 
resources: ["configmaps"] 
resourceNames: ["my-configmap"] 
verbs: ["update", "get"] 
Rather than referring to individual resources, apiGroups, and verbs, you can use the wildcard * symbol to refer to all such 
objects. For nonResourceURLs, you can use the wildcard * as a suffix glob match. For resourceNames, an empty set 
means that everything is allowed. Here is an example that allows access to perform any current and future action on all 
current and future resources in the example.com API group. This is similar to the built-in cluster-admin role. 

apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
namespace: default 
name: example.com-superuser # DO NOT USE THIS ROLE, IT IS JUST AN EXAMPLE 
rules: 
- apiGroups: ["example.com"] 
resources: ["*"] 
verbs: ["*"] 
 

4.Post-Compromise 
Once an attacker obtains cluster admin, the post-compromise phase can begin. During this phase, the attacker may work 
on establishing persistence in case their initialattack vector is discovered and closed. There are numerous paths in 
Kubernetes, andLinux environments in general, that an attacker can take advantage of for persistence. A few notable 
persistence vectors are included below. 
4.1. System:Masters Group 
With cluster admin, an attacker can establish a presence on any control plane nodeand steal the CA certificates in 
/etc/kubernetes/pki. For good measure, the attacker cansteal the Kubernetes and ETCD certificates. This way, the attacker 
can authenticateagainst the Kubernetes API and the ETCD database that hosts all the information for theKubernetes 
environment, dump the ETCD contents, and further compromise their target. 
The Kubernetes certificates can create a new `user` in the system:masters group. The system:masters group allows 
unrestricted access to the Kubernetes API without needing any roles or rolebindings. Every role/rolebinding could be 
deleted from a Kubernetes environment, and an attacker with access to the system:masters group would still have full 
administrative access to the entire cluster. 
Creating accounts in the system:masters group is easier said than done since it is blocked within Kubernetes by an 
admission controller called CertificateSubjectRestriction (McCune, 2022). While this blocks the ability to approve 
certificate signing requests within Kubernetes for the system:masters group, attackers can still create the certificates using 
other tools such as openssl (Buskermolen, 2022). If theattacker has valid CA certificates from the Control Plane node, 
they can create their user certs on another computer and use them to take complete control. 
4.2 Widespread Host Compromise via Daemonsets 
Attackers can establish even more persistence on the actual hosts by creating additional user accounts, creating cronjobs, 
setting up reverse shells, and hiding artifacts throughout the compromised systems. Many of these activities can be 
accomplished using Kubernetes, running commands from highly privileged pods, and creating daemonsets to ensure the 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
137 

 
 

pods are installed on every node in the Kubernetes cluster. Even a Kubernetes environment with thousands of nodes could 
be attacked this way since daemonsets ensure a workload runs on every single node of a Kubernetes cluster. 
Tolerations would likely need to be added to the daemonsets configuration. However, an attacker with complete control of 
the Kubernetes environment can quickly determine the configurations needed to ensure their daemonsets run on every 
node. 
4.3 ETCD Compromise 
ETCD is a highly-available, distributed key-value store that Kubernetes uses to store all cluster data. While there are 
Kubernetes environments that utilize other data stores, ETCD is the most common. An attacker with access to the ETCD 
certificates located on the control plane nodes can authenticate with ETCD and use this access to monitor when secrets are 
added, modified, or deleted. They can also modify cluster data, bypass RBAC, and inject their modified data into ETCD. 
If the attacker has network access to the ETCD data stores, this can be done outside the Kubernetes 
environment.Controlling ETCD is another way to establish complete control over a Kubernetes clustersince the attacker 
can essentially control the data that Kubernetes relies on to make authentication and authorization decisions (LobuhiSec, 
2023). 
4.4. Beyond Kubernetes 
Although this research targets on-prem environments, it would not be complete without mentioning exploitation risks in 
cloud environments. Over the last few years, Kubernetes adoption has grown immensely and has been coined by many 
organizations as the operating  system of the cloud. Attackers that attack and compromise Kubernetes ecosystems hosted 
in cloud environments can often migrate to the cloud infrastructure, steal sensitive information, and install crypto-miners. 
An example is a recent attack, SCARLETEEL (Pellitteri, 2023), on one firm’s Kubernetes environment hosted in Amazon 
Web Services (AWS). The attacker compromised the cloud environment by exploiting a vulnerable Kubernetes pod and 
then used the privileges gained from that podto deploy containers with crypto-mining software. The attackers could then 
move from the Kubernetes environment into the AWS environment and access some of the firm’s sensitive data. 
The distributed nature of Kubernetes and its ability to host many types of applications requiring different levels of 
permissions can provide a lucrative attack surface for an attacker. Understanding which applications have privileges an 
attacker will target is essential. An organization that understands what privileges are being requested by their applications 
can take steps towards minimizing those permissions or moving highly privileged applications away from public-facing 
applications and onto hardened areas of the network. 
5. Cluster Defense 
Engineers responsible for building, operating, and maintaining Kubernetes environments must take a multi-faceted 
approach to secure their environments. Enumeration of an environment is one of the first steps an attacker will attempt 
when targeting a Kubernetes environment. With the enumeration phase so crucial for an attacker, it makes sense that it is 
just as crucial for defenders. There are numerous steps a defender can take to make enumeration (and overall compromise) 
by an attacker more difficult. The following steps are discussed: 
1. Enforce Pod Security Standards 
2. Limit Service Account Auto-mount 
3. Review RBAC Permissions and Follow Least Privilege 
4. Encrypt Secrets 
5. Utilize Network Policies defender can take to make enumeration (and overall compromise) by an attacker more 
difficult. The following steps are discussed: 

1. Enforce Pod Security Standards 
2. Limit Service Account Auto-mount 
3. Review RBAC Permissions and Follow Least Privilege 
4. Encrypt Secrets 
5. Utilize Network Policies 
 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
138 

 
 

5.1. Enforce Pod Security Standards 
Enumeration of the research environment depends on having access to the /var/lib/kubelet directory on the Kubernetes 
hosts, which is generally locked down to the root user. An attacker must be able to escape the confines of whatever 
Kubernetes pod they have access to and escalate their permissions to root on the Kubernetes host before they can begin 
their service account token enumeration. Without escaping the Kubernetes pod, an attacker might only have access to the 
privileges granted by the service account token inside the pod (if it is mounted). An attacker can use various methods to 
escape from a Kubernetes pod. Fortunately, there are Pod Security Standards available in Kubernetes that can mitigate 
most of the methods an attacker has available to them. Pod Security Standards provide three different policies that can be 
utilized to restrict a Kubernetes environment. The three policies are Privileged, Baseline, and Restricted (Pod security 
standards 2023). The Privileged policy is intentionally unrestricted and should not be used in a production environment. 
For most environments, the Baseline policy will meet the majority of security needs and will provide a significant amount 
of protection from container/pod breakouts. The research environment operated on the premise that an attacker could 
access a privileged pod and use it to break out into the host operating system. This escalation vector would be blocked 
since the Baseline policy disallows privileged containers. The primary Kubernetes documentation has additional details on 
what specific capabilities Pod Security Standards block and is located at https://kubernetes.io/docs/concepts/security/pod-
security-standards/. Pod Security Standards must be thoroughly tested before moving them to enforce mode. The 
Kubernetes documentation provides the following example that can apply an audit/warn baseline policy to all 
namespaces. kubectl label --overwrite ns --all \ pod-security.kubernetes.io/audit=baseline \ pod-
security.kubernetes.io/warn=baseline. 
 
5.2.Limit Service Account Auto-mount 
Service account tokens are only created if a service account or pod is configured to mount the token. In Kubernetes, a 
default service account is created in every namespace and is auto-mounted to pods that do not specify a service account. 
This behavior can be turned off by specifying automountServiceAccountToken: false in the service account or pod 
configuration. If an application does not need to access the Kubernetes API, it should not have a token mounted. Only 
mounting necessary tokens will help ensure that Kubernetes engineers are more explicit in what applications can access 
the API. This also limits the number of service account tokens an attacker can access if the attacker manages to 
compromise any of the Kubernetes hosts. 
 
5.3.Review RBAC Permissions and Follow Least Privilege 
Role-Based Access Control can quickly become overwhelming for engineers. Fortunately, there are many solutions to 
assist with understanding RBAC. One site called RBAC.dev has a well-curated list of resources for documentation, talks, 
and tooling concerning Kubernetes RBAC. Additional notable resources are listed below. 
• RBAC.dev 
• OWASP Kubernetes Security Cheat Sheet 
• OWASP Kubernetes Security Testing Guide (KSTG) 
• Kubernetes.io Security Documentation 
• Kubernetes.io RBAC Good Practices 
• Threat Matrix for Kubernetes 
• HackTricks Kubernetes Pentesting 
• NSA Kubernetes Hardening Guide 
Although tools exist for enumerating Kubernetes privileges, the author had difficulty finding a tool or script that was easy 
to utilize and could list the privileges for every service account on a particular node. The difficulty finding tools led the 
author to create the script called kubelet-defendernum.sh. 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
139 

 
 

 
In order to entirely run the script, jq and netstat must be installed on the server. The script utilizes netstat to locate the API 
server address from a worker node. However, the script can be modified to manually specify the API server address if it is 
alreadyknown. Additionally, the kubectl package manager called Krew, and the Kubernetes plugin whoami, must be 
installed. The whoami plugin requires a valid kubeconfig file in ~/.kube/config to help enumerate which service account a 
token applies to. Kubectl auth can-i will enumerate the permissions in the present kubeconfig instead of the actual service 
account token. Hence, the script temporarily moves the kubeconfig file duringeach loop iteration to ensure the token 
permissions of the service accounts are enumerated. The script can tell which service account token permissions are tied 
to, when the token expires, and what the token's permissions are. The last part of the script makes two specific checks to 
see if the token has cluster-admin privileges and if the token can list secrets in the kube-system namespace. 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
140 

 
 

 
As mentioned earlier, listing secrets can be an easy way to escalate privileges, such as by listing the secret for the 
clusterrole-aggregation-controller service account and using its escalate privilege to obtain cluster admin. If the 
clusterrole-aggregation-controller service account does not have a secret generated, a service account token that can create 
secrets can be utilized to create the secret. Another token with get, list, or watch secret privileges can then grab the token.  
 
5.4.Encrypt Secrets 
Kubernetes secrets are not encrypted by default which presents a security risk if an attacker gains access to ETCD or can 
view secrets within Kubernetes. By setting up encryption at rest for secrets, the risks posed by an attacker stealing secrets 
are significantly minimized. An attacker would also need to access the control plane servers to steal the encryption keys 
before they could utilize them. Suppose an attacker already has access to the host file system of the control plane servers. 
In that case, they likely have cluster admin or can quickly obtain cluster admin, indicating a much larger issue than 
unencrypted secret data. 
In addition to restricting the RBAC privileges for secrets, engineers should encrypt the secrets to prevent an attacker with 
API or ETCD access from utilizing them. Kubernetes provides documentation at 
https://kubernetes.io/docs/tasks/administercluster/ encrypt-data/#ensure-all-secrets-are-encrypted that explains how to 
encrypt Kubernetes secrets. Other best practices for secret management should include not logging the secret data in the 
clear, not storing secrets in pod configurations, deployments, and other Kubernetes workloads, and ensuring unencrypted 
secrets are not checked into source code repositories. 
 
5.5.Utilize Network Policies 
 
Kubernetes operates on a flat network that allows all namespaces to talk to each other. Flat networks are great for ease of 
use and simplicity, but there are better options when it comes to security. The Calico network plugin was chosen for the 
research environment since it supports network policies. A network policy allows engineers to restrict communication 
between namespaces, pods, IPs, and ports. This is especially useful in multi-tenant environments where administrators 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
141 

 
 

must restrict communication between tenant environments. An attacker or malicious user will have difficulty enumerating 
and compromising environments that have created and implemented network policies on their namespaces. 
 
5.6.Detecting Attacker Enumeration 
Kubernetes has extensive logging capabilities that can be utilized to detect malicious activity. In order to take advantage 
of the logging capabilities, auditing must be turned on and audit policies configured. Care must also be taken when 
configuring audit policies to ensure secret data is not inadvertently collected. Audit logging does increase memory 
consumption, but its value is worth the extra resources. According to the Kubernetes documentation, auditing allows the 
following questions to be answered: 
 
What happened? 
• When did it happen? 
• Who initiated it? 
• On what resources did it happen? 
• Where was it observed? 
• From where was it initiated? 
• To where was it going? 
The audit data can be sent to a remote web API, and engineers can set up alerts when suspicious activity is detected. 
Third-party tools can also be configured to assist with threat hunting, such as the open-source tool Falco. A combination 
of audit logging and threat hunting can quickly detect when attackers begin enumerating service account tokens. An 
application will rarely query what privileges it possesses, which makes the activity stand out. Audit logs will provide 
additional details to help engineers stop further malicious activity and catch the attacker early in the enumeration phase 
before they can compromise the entire cluster. 
6.Recommendations and Implications for Future 
Research 
Kubernetes security is complicated, and the speed at which it is being adopted and improved makes securing it even more 
difficult. When securing Kubernetes, the primary recommendation for engineers is to ensure RBAC privileges are planned 
out, enforced, and regularly reviewed. The scripts provided in this paper are a great start to evaluating what privileges 
applications are requesting and can be customized, extended, or improved to fit an organization's needs. With additional 
developer support, the scripts can even be turned into an open-source tool that others can utilize. Research is needed to 
create additional examples of how specific privileges can lead to privilege escalation and how those privileges are mapped 
to popular applications. 
Mapping applications and their risky privileges will help ensure engineers and developersare informed on what RBAC 
risks various applications pose so that design decisions canbe made regarding how to secure the applications. 
 
Multiple kubelet-defendernum.sh script runs have shown that service account tokens are valid for one year. The 
Kubernetes documentation states that API credentialsare obtained using the TokenRequest API and have a bounded 
lifetime of one hour, which is different from the case in Kubernetes v1.26 since automatically generated service account 
tokens all show as valid for one year. Deleting the pod associated with a service account token invalidates/deletes the 
token. However, until the pod is deleted, an attacker can continue utilizing the token without it expiring. Additional 
research to validate this assumption needs to be performed, and awareness should be drawn to it if the assumption is 
correct. 
Lastly, limited documentation mentions service accounts in the /var/lib/kubelet/pods directory on Kubernetes hosts. The 
information should be added to the primary Kubernetes documentation. 
 
 
 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
142 

 
 

7.Conclusion 
 
Kubernetes adoption continues to increase in many industries, and the ease, simplicity, and speed at which new 
applications are deployed is enticing to engineers, businesses, developers, and users. Unfortunately, this adoption has also 
significantly increased complexity and security blind spots. Large numbers of service account tokens can be enumerated 
at once, an attacker can combine the privileges to perform privilege escalation, and the attacker can gain control of an 
entire Kubernetes cluster. 
 
In most cases, the attacker will require privileged host access to one or more of the worker nodes, but once they obtain 
that access, the process of chaining privileges can begin. One token may have permission to create pods, and another 
might be able to create secrets in the kube-system namespace, while another might be able to read secrets in the kube-
system namespace. An attacker can quickly move from one compromised host to cluster admin with access to multiple 
service account tokens and a deep understanding of Kubernetes RBAC. 
 
This research has provided many examples of how an attacker can abuse and chain RBAC privileges and steps that 
defenders can take to protect their Kubernetes clusters. Constant vigilance by defenders is required, but the likelihood of 
compromise can be significantly reduced by following recommended Kubernetes security best practices, implementing 
auditing and threat hunting, and regularly reviewing the privileges requests by all the applications running in their 
environment. 
 
7.References 
 
CNCF Cloud Native Interactive Landscape. Cloud Native Landscape. (n.d.). Retrieved 
April 27, 2023, from https://landscape.cncf.io/card-mode 
Cormier, P. (2022, February 22). The State of Enterprise Open Source: A Red Hat 
Report. Red Hat - We make open source technologies for the enterprise. Retrieved 
April 8, 2023, from https://www.redhat.com/en/resources/state-of-enterprise-opensource- report-2022 
Kubernetes. (2022, December 26). Kubernetes API Concepts. Retrieved April 8, 2023, from 
https://kubernetes.io/docs/reference/using-api/api-concepts/ 
LobuhiSec. (2023, January 16). Abusing ETCD to inject resources and bypass RBAC and admission controller 
restrictions. Medium. Retrieved May 4, 2023, from 
https://lobuhisec.medium.com/using-etcd-to-inject-resources-and-bypass-rbac-andadmission- controller-restrictions-
f240ae31e7f0 
Managing service accounts. Kubernetes. (2023, April 1). Retrieved April 9, 2023, from 
ttps://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/ 
McCune, R. (2022, April 6). Kubernetes Rbac: How to avoid privilege escalation via certificate signing. Aqua Blog. 
Retrieved April 29, 2023, from https://blog.aquasec.com/kubernetes-rbac-privilige-escalation 
Metz, C. (2014, June 10). Google open sources its secret weapon in cloud computing. 
Wired. Retrieved April 8, 2023, from https://www.wired.com/2014/06/googlekubernetes/ 
Pellitteri, A. (2023, February 28). Scarleteel: Operation leveraging terraform, 
Kubernetes, and AWS for Data Theft. Sysdig. Retrieved May 6, 2023, from 
https://sysdig.com/blog/cloud-breach-terraform-data-theft/ 
Pod security standards. Kubernetes. (2023, April 29). 
https://kubernetes.io/docs/concepts/security/pod-security-standards/ 
Secrets. Kubernetes. (2023, April 28). Retrieved April 28, 2023, from 
https://kubernetes.io/docs/concepts/configuration/secret/ 
Using RBAC authorization. Kubernetes. (2023, April 5). Retrieved April 29, 2023, from 



 
Cover Page 

  

  
 
DOI: http://ijmer.in.doi./2023/12.10.26 
www.ijmer.in 

 

 

ISSN:2277-7881; IMPACT FACTOR :8.017(2023); IC VALUE:5.16; ISI VALUE:2.286 
Peer Reviewed and Refereed Journal: VOLUME:12, ISSUE:10(1), October:2023 

Online Copy of Article Publication Available (2023 Issues) 
Scopus Review ID: A2B96D3ACF3FEA2A 

Article Received:2ndOctober2023 
 Publication Date:30thOctober 2023 

Publisher: Sucharitha Publication, India 
Digital Certificate of Publication:www.ijmer.in/pdf/e-CertificateofPublication-IJMER.pdf 

 

 
143 

 
 

https://kubernetes.io/docs/reference/access-authn-authz/rbac/ 
Workload Resources. Kubernetes. (2021, June 16). Retrieved April 28, 2023, from 
https://kubernetes.io/docs/concepts/workloads/controllers/ 
 
 

















ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
84 

 

Nano materials in health Care 

_______________________________________________________ 

R.Vijayadeepika, Lecturer in Zoology, CSTS Government kalasala, 

Jangareddigudem 

_______________________________________________________ 

Abstract: 

"Nanomaterials have emerged as a transformative force in 

healthcare, showcasing immense potential in revolutionizing 

diagnostics, therapeutics, and medical device technology. Operating 

at the nanoscale, these materials exhibit unique physicochemical 

properties that enable precise interactions with biological systems, 

offering novel solutions to longstanding healthcare challenges. This 

abstract explores the multifaceted roles of nanomaterials in 

healthcare, encompassing targeted drug delivery systems, advanced 

diagnostic tools with heightened sensitivity, tissue engineering for 

regenerative medicine, and enhanced medical devices. While 

presenting promising opportunities for personalized and minimally 

invasive treatments, the abstract also addresses safety concerns, 

ethical considerations, and the imperative for comprehensive 

education and outreach to ensure responsible and effective integration 

of nanomaterials in healthcare." 

 

Keywords: Nano medicine, Dendrimers, Liposome, Nanoparticle 

Albumin-bound (nab) 

 

Nanomaterials have emerged as powerful tools in 

revolutionizing healthcare, offering unprecedented opportunities to 

address challenges in diagnosis, treatment, and disease management. 

At the nanoscale, these materials exhibit exceptional properties that 

enable precise interactions with biological systems, opening new 

frontiers in medicine. From targeted drug delivery systems to 

innovative diagnostic tools and advanced tissue engineering, the 

integration of nanomaterials in healthcare holds immense promise for 



ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
85 

 

transforming the landscape of medical interventions, paving the way 

for more effective, personalized, and minimally invasive treatments. 

Nanomedicine is a broad-spectrum field of science and 

technology that unites multiple streams of medical applications such 

as disease treatment and diagnosis, disease prevention, pain relieving 

technologies, human health improvement medicine, nanoscale 

technology against traumatic injury, and treatment options for 

diseases .Thus, an interdisciplinary approach is being adopted to 

apply the outcomes of biotechnology, nanomaterials, biomedical 

robotics, and genetic engineering combined under the broad category 

of nanomedicine  

Nanotechnology in Diagnosis 

 Nanoparticle platforms have been developed and optimized 

for the detection of pathogens and cancer biomarkers such that 

diagnostic procedures now become less cumbersome but more 

sensitive because most of the complex procedures are now integrated 

onto a simple device having the capacity to be used for on-the-spot 

diagnosis. 

Nanomedicine is an emerging approach for the 

implementation of nanotechnological systems in disease diagnosis 

and therapy. This branch of nanotechnology can be classified in two 

main categories: nanodevices and nanomaterials. Nanodevices are 

miniature devices at nanoscale including microarrays and some 

intelligent machines like reciprocates. Nanomaterials contain 

particles smaller than 100 nanometres (nm) in at least one dimension. 

The application of conventional therapeutic agents has 

limitations such as non-selectivity, undesirable side effects, low 

efficiency, and poor biodistribution. Therefore, the focus of current 

research activities is to design well-controlled and multifunctional 

delivery systems. 

As soon as nanoparticles enter to the bloodstream, they are 

prone to aggregation and protein opsonization (protein binding to 

nanoparticle surface as a tag for immune system recognition). The 



ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
86 

 

opsonized nanoparticles could be cleared from the bloodstream by 

phagocytosis or filtration in the liver, spleen, and kidney. This rapid 

and non-specific clearance by the immune system results in decreased 

retention time and thus limits bioavailability. By decorating the 

nanoparticle surface with polyethylene glycol (PEG), carbohydrates, 

acetyl groups, or protein moieties (arginine-glycine-aspartate (RGD) 

peptide, albumin), retention time can be altered  

Size is another important factor playing role in controlling 

circulation and biodistribution of therapeutic nanoparticles. 

Nanoparticles smaller than 10 nm, can be easily cleared by 

physiological systems (filtration through the kidney), while particles 

larger than 200 nm may be cleared by phagocytic cells in the 

reticuloendothelial system (RES). Accordingly, therapeutic 

nanoparticles with a size of ˂100 nm have longer circulation time in 

the bloodstream. Many studies reported that therapeutic nanoparticles 

in 20–200 nm size showed a higher accumulation rate in tumors 

because they cannot be recognized by the RES and filtrated by the 

kidney 

Nanoparticle drug delivery:  

Nanoparticle drug delivery systems are engineered 

technologies that use nanoparticles for the targeted delivery and 

controlled release of therapeutic agents. The modern form of a drug 

delivery system should minimize side-effects and reduce both dosage 

and dosage frequency. Recently, nanoparticles have aroused attention 

due to their potential application for effective drug delivery. 

The National Institute of Biomedical Imaging and 

Bioengineering has issued the following prospects for future research 

in nanoparticle drug delivery systems: 

1. crossing the blood-brain barrier (BBB) in brain diseases and 

disorders; 

2. enhancing targeted intracellular delivery to ensure the 

treatments reach the correct structures inside cells; 

https://en.wikipedia.org/wiki/Nanoparticle
https://en.wikipedia.org/wiki/Drug_delivery
https://en.wikipedia.org/wiki/Drug_delivery
https://en.wikipedia.org/wiki/National_Institute_of_Biomedical_Imaging_and_Bioengineering
https://en.wikipedia.org/wiki/National_Institute_of_Biomedical_Imaging_and_Bioengineering
https://en.wikipedia.org/wiki/Blood%E2%80%93brain_barrier


ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
87 

 

3. combining diagnosis and treatment. 

The development of new drug systems is time-consuming; it 

takes approximately seven years to complete fundamental research 

and development before advancing to preclinical animal studies. 

Nanoparticle drug delivery focuses on maximizing drug efficacy 

and minimizing cytotoxicity. Fine-tuning nanoparticle properties for 

effective drug delivery involves addressing the following factors. The 

surface-area-to-volume ratio of nanoparticles can be altered to allow 

for more ligand binding to the surface. Increasing ligand binding 

efficiency can decrease dosage and minimize nanoparticle toxicity. 

Minimizing dosage or dosage frequency also lowers the mass of 

nanoparticle per mass of drug, thus achieving greater efficiency.  

Current nanoparticle drug delivery systems can be cataloged 

based on their platform composition into several groups: polymeric 

nanoparticles, inorganic nanoparticles, viral nanoparticles, lipid-

based nanoparticles, and nanoparticle albumin-bound (nab) 

technology. Each family has its unique characteristics. 

Polymeric nanoparticles 

Polymeric nanoparticles are synthetic polymers with a size 

ranging from 10 to 100 nm. Common synthetic polymeric 

nanoparticles include polyacrylamide, polyacrylate, and 

chitosan.] Drug molecules can be incorporated either during or after 

polymerization. 

Dendrimers 

Dendrimers are unique hyper-branched synthetic polymers 

with monodispersed size, well-defined structure, and a highly 

functionalized terminal surface. They are typically composed of 

synthetic or natural amino acid, nucleic acids, and carbohydrates. 

Therapeutics can be loaded with relative ease onto the interior of the 

dendrimers or the terminal surface of the branches via electrostatic 

interaction, hydrophobic interactions, hydrogen bonds, chemical 

linkages, or covalent conjugation. Drug-dendrimer conjugation can 

elongate the half-life of drugs. 

https://en.wikipedia.org/wiki/Dendrimers


ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
88 

 

Inorganic Nanoparticles and Nanocrystals 

Inorganic nanoparticles have emerged as highly valuable 

functional building blocks for drug delivery systems due to their well-

defined and highly tunable properties such as size, shape, and surface 

functionalization. Inorganic nanoparticles have been largely adopted 

to biological and medical applications ranging from imaging and 

diagnoses to drug delivery.] Inorganic nanoparticles are usually 

composed of inert metals such as gold and titanium that form 

nanospheres, however, iron oxide nanoparticles have also become an 

option. 

Toxicity 

While application of inorganic nanoparticles in 

bionanotechnology shows encouraging advancements from a 

materials science perspective, the use of such materials in vivo is 

limited by issues related with toxicity, biodistribution 

and bioaccumulation. Because metal inorganic nanoparticle systems 

degrade into their constituent metal atoms, challenges may arise from 

the interactions of these materials with biosystems, and a considerable 

amount of the particles may remain in the body after treatment, 

leading to buildup of metal particles potentially resulting in toxicity. 

Organic Nanocrystals 

Organic nanocrystals consist of pure drugs and surface 

active agents required for stabilization. They are defined as carrier-

free submicron colloidal drug delivery systems with a mean particle 

size in the nanometer range. The primary importance of the 

formulation of drugs into nanocrystals is the increase in particle 

surface area in contact with the dissolution medium, therefore 

increasing bioavailability. A number of drug products formulated in 

this way are on the market. 

Liposome delivery 

Liposomes are spherical vesicles composed of synthetic or natural 

phospholipids that self-assemble in aqueous solution in sizes ranging 

from tens of nanometers to micrometers. The resulting vesicle, which 

https://en.wikipedia.org/wiki/Bioaccumulation
https://en.wikipedia.org/wiki/Liposomes


ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
89 

 

has an aqueous core surrounded by a hydrophobic membrane, can be 

loaded with a wide variety of hydrophobic or hydrophilic molecules 

for therapeutic purposes. 

Biological Nanocarriers 

Viruses can be used to deliver genes for genetic engineering or gene 

therapy. Commonly used viruses include adenoviruses, retroviruses, 

and various bacteriophages. The surface of the viral particle can also 

be modified with ligands to increase targeting capabilities. While 

viral vectors can be used to great efficacy, one concern is that may 

cause off-target effects due to its natural tropism. This usually 

requires replacing the proteins causing virus-cell interactions with 

chimeric proteins. 

Nanoparticle Albumin-bound (nab) Technology 

Nanoparticle albumin-bound technology utilizes the protein albumin 

as a carrier for hydrophobic chemotherapy drugs through noncovalent 

binding. Because albumin is already a natural carrier of hydrophobic 

particles and is able to transcytose molecules bound to itself, albumin 

composed nanoparticles have become an effective strategy for the 

treatment of many diseases in clinical research. 

Delivery and Release mechanism 

An ideal drug delivery system should have effective targeting and 

controlled release. The two main targeting strategies are passive 

targeting and active targeting. Passive targeting depends on the fact 

that tumors have abnormally structured blood vessels that favor 

accumulation of relatively large macromolecules and nanoparticles. 

This so-called enhanced permeability and retention 

effect (EPR)allows the drug-carrier be transported specifically to the 

tumor cells. Active targeting is, as the name suggests, much more 

specific and is achieved by taking advantage of receptor-ligand 

interactions at the surface of the cell membrane. 

https://en.wikipedia.org/wiki/Enhanced_permeability_and_retention_effect
https://en.wikipedia.org/wiki/Enhanced_permeability_and_retention_effect


ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
90 

 

Toxicity: 

Some of the same properties that make nanoparticles efficient drug 

carriers also contribute to their toxicity. For example, gold 

nanoparticles are known to interact with proteins through surface 

adsorption, forming a protein corona, which can be utilized for cargo 

loading and immune shielding. However, this protein-adsorption 

property can also disrupt normal protein function that is essential for 

homeostasis, especially when the protein contains exposed sulfur 

groups. 

 Conclusion: 

In conclusion, nanoparticle drug delivery systems represent 

a groundbreaking approach with the potential to revolutionize the 

field of medicine. Their ability to encapsulate, protect, and precisely 

deliver therapeutic agents to targeted sites offers numerous 

advantages, including enhanced drug efficacy, reduced side effects, 

and improved patient outcomes. However, challenges such as long-

term safety, scalability, and regulatory considerations persist, 

warranting continued research and development. Despite these 

hurdles, the immense promise of nanoparticle drug delivery systems 

underscores their pivotal role in shaping the future of 

pharmaceuticals, paving the way for more precise, personalized, and 

effective therapies across a wide spectrum of diseases and medical 

conditions 

 

References: 

Pramanik, P.K.D.; Solanki, A.; Debnath, A.; Nayyar, A.; El-Sappagh,  

S.; Kwak, K.S. Advancing modern healthcare with 

nanotechnology, nano biosensors, and internet of nano 

things: Taxonomies, applications, architecture, and 

challenges. IEEE Access 2020, 8, 65230–65266. [Google 

Scholar] [CrossRef] 

Wong, I.Y.; Bhatia, S.N.; Toner, M. Nanotechnology: Emerging  

https://en.wikipedia.org/wiki/Protein_corona
https://scholar.google.com/scholar_lookup?title=Advancing+modern+healthcare+with+nanotechnology,+nanobiosensors,+and+internet+of+nano+things:+Taxonomies,+applications,+architecture,+and+challenges&author=Pramanik,+P.K.D.&author=Solanki,+A.&author=Debnath,+A.&author=Nayyar,+A.&author=El-Sappagh,+S.&author=Kwak,+K.S.&publication_year=2020&journal=IEEE+Access&volume=8&pages=65230%E2%80%9365266&doi=10.1109/ACCESS.2020.2984269
https://scholar.google.com/scholar_lookup?title=Advancing+modern+healthcare+with+nanotechnology,+nanobiosensors,+and+internet+of+nano+things:+Taxonomies,+applications,+architecture,+and+challenges&author=Pramanik,+P.K.D.&author=Solanki,+A.&author=Debnath,+A.&author=Nayyar,+A.&author=El-Sappagh,+S.&author=Kwak,+K.S.&publication_year=2020&journal=IEEE+Access&volume=8&pages=65230%E2%80%9365266&doi=10.1109/ACCESS.2020.2984269
https://doi.org/10.1109/ACCESS.2020.2984269


ISSN: 2582-5887; Peer-Reviewed Refereed International Journal 

(UIJES); Volume-5, Special Issue 2(January-2024);  

Impact Factor: 6.71(SJIF) 

_______________________________________________________ 

__________________________________________________ 
91 

 

Tools for Biology and Medicine. Genes. Dev. 2013, 27, 

2397–2408. [Google Scholar] [CrossRef] 

Chandrasekhar S., Iyer L.K., Panchal J.P., Topp E.M., Cannon J.B.,  

Ranade V.V. Microarrays and microneedle arrays for 

delivery of peptides, proteins, vaccines and other 

applications. Expert Opin. Drug Deliv. 2013;10:1155–1170. 

doi: 10.1517/17425247.2013.797405. [PubMed] 

[CrossRef] [Google Scholar] 

Shreffler J.W., Pullan J.E., Dailey K.M., Mallik S., Brooks A.E.  

Overcoming Hurdles in Nanoparticle Clinical Translation: 

The Influence of Experimental Design and Surface 

Modification. Int. J. Mol. Sci. 2019;20:6056. 

doi: 10.3390/ijms20236056. [PMC free article] [PubMed] 

[CrossRef] [Google Scholar] 

Nanoparticles as drug delivery systems,Pharmacological Reports,  

Volume 64, Issue 5,2012,Pages 1020-1037,ISSN 1734-

1140, https://doi.org/10.1016/S1734-1140(12)70901-5 

Turos, E., et al., Antibiotic-conjugated polyacrylate nanoparticles:  

New opportunities for development of anti-MRSA agents. 

Bioorganic & Medicinal Chemistry Letters, 2007. 17(1): p. 

53-56. 

Gillies, E.R. and J.M.J. Fréchet, Dendrimers and dendritic polymers  

in drug delivery. Drug Discovery Today, 2005. 10(1): p. 35-

43. 

Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle  

Delivery of Cancer Drugs. Annual Review of Medicine, 63 

(1), 185–198. doi: 10.1146/annurev-med-040210-162544. 

Bio-inspired, bioengineered and biomimetic drug delivery carriers.  

Nature Reviews Drug Discovery, 2011. 10: p. 521. 

Fratoddi, I., et al., How toxic are gold nanoparticles? The state-of-the- 

art. Nano Research, 2015. 8(6): p. 1771-1799. 

https://scholar.google.com/scholar_lookup?title=Nanotechnology:+Emerging+Tools+for+Biology+and+Medicine&author=Wong,+I.Y.&author=Bhatia,+S.N.&author=Toner,+M.&publication_year=2013&journal=Genes.+Dev.&volume=27&pages=2397%E2%80%932408&doi=10.1101/gad.226837.113
https://doi.org/10.1101/gad.226837.113
https://pubmed.ncbi.nlm.nih.gov/23662940
https://doi.org/10.1517%2F17425247.2013.797405
https://scholar.google.com/scholar_lookup?journal=Expert+Opin.+Drug+Deliv.&title=Microarrays+and+microneedle+arrays+for+delivery+of+peptides,+proteins,+vaccines+and+other+applications&author=S.+Chandrasekhar&author=L.K.+Iyer&author=J.P.+Panchal&author=E.M.+Topp&author=J.B.+Cannon&volume=10&publication_year=2013&pages=1155-1170&pmid=23662940&doi=10.1517/17425247.2013.797405&
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928924/
https://pubmed.ncbi.nlm.nih.gov/31801303
https://doi.org/10.3390%2Fijms20236056
https://scholar.google.com/scholar_lookup?journal=Int.+J.+Mol.+Sci.&title=Overcoming+Hurdles+in+Nanoparticle+Clinical+Translation:+The+Influence+of+Experimental+Design+and+Surface+Modification&author=J.W.+Shreffler&author=J.E.+Pullan&author=K.M.+Dailey&author=S.+Mallik&author=A.E.+Brooks&volume=20&publication_year=2019&pages=6056&pmid=31801303&doi=10.3390/ijms20236056&
https://doi.org/10.1016/S1734-1140(12)70901-5

	RESEARCH & PUBLICATIONS
	Sco-ugccare-Nov-2023
	26
	zoology journal uijes
	Nano material in health care
	Keywords: Nano medicine, Dendrimers, Liposome, Nanoparticle Albumin-bound (nab)


